
JOURNAL OF COMPUTATIONAL PHYSICS 121, 271 --280 (1995) 

An Adaptive Discrete-Velocity Model for 
the Shallow Water Equations 

B. T. NADIGA 

Theoretical Division and CNLS, Los Alamos National l.z~boratories, Los Alamos, New Mexico 87545 

Received June 23, 1994; revised March  20, 1995 

A new approach to solving the shallow water equations is pre- 
sented. This involves using discrete velocities of an adaptive nature 
in a finite vo lume context. The origin of the discrete-velocity space 
and the magnitudes of the discrete-velocities are both spatially and 
temporal ly  variable. The near-equil ibrium f low method of Nadiga 
and Pullin is used to arrive at a robust second-order (in both space 
and time) scheme-- the adaptive discrete velocity (ADV) scheme--  
which captures hydraulic jumps with no oscillations. The f low over a 
two-dimensional  ridge, over a wide range of undisturbed upstream 
Froude numbers prove the robustness and accuracy of the scheme. 
A comparison of the interaction of two circular vortex patches in 
the presence of bottom topography as obtained by the ADV scheme 
and a semi-Lagrangian scheme more than validates the new scheme 
in two dimensions. © 1995 Academic Press, Inc. 

1. INTRODUCTION 

As the name suggests, a discrete velocity gas is an ensemble 
of particles with each particle taking on one of a small finite 
set of allowable velocities [2-4]. Further, the interaction 
between particles is defined to achieve the desired macro- 
behavior of the system. The desired macro-behavior of the 
discrete-velocity gas could be a set of partial differential 
equations describing a particular physical phenomenon and 
which could itself have been derived either from the micro- 
scopics or written down as a phenomenological model. If 
the partial differential equations are derived from microscop- 
ics, the definition of the velocities and the interactions in 
the discrete-velocity gas system is in some sense a minimal 
representation of the microscopics of the original system. 
Such a discretization of the velocity space and definition of 
the particle interactions also form the basis for the lattice 
gas and lattice Boltzmann techniques which have been devel- 
oped over the last eight years [5-7]. Mechanics of these 
models show that their strong point is the simple and elegant 
way in which they combine physics and numerics. In using 
these models to simulate fluid phenomena, however, the 
artifacts of the discretized velocity space [8] and its coupling 
to the physical lattice in the lattice gas and lattice Boltzmann 
techniques severly limit the operational window of these 
models. In view of the above two statements, we think 
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that simple and yet very powerful schemes to solve partial 
differential equations can be arrived at by incorporating 
the discrete-velocity gas ideas in other more conventional 
numerical techniques. In this article we consider one such 
hybridization--the discrete-velocity gas with the finite volume 
technique--resulting in a scheme we call the adaptive discrete 
velocity (ADV) scheme. 

The physical system we consider is the dynamics of the free 
surface in the long wave limit of an (shallow) incompressible 
and homogeneous layer of fluid. The set of partial differential 
equations that describe this system to the lowest order (in the 
shallowness parameter e = H/A, the ratio of the depth to the 
horizontal wavelength of interest) is the well-known classical 
shallow water equations and it is this set of partial differential 
equations that we seek to model. 

In the next section, the shallow water equations are briefly 
discussed, followed by a brief description of the nine-velocity 
gas in Section 3. In Section 4, the adaptive nature of the discrete- 
velocities is introduced and the equivalence of the ADV model 
to the shallow water equations is shown. Section 5 gives a step 
by step numerical evolution of the ADV model on the lines of 
Nadiga and Pullin [1]. In Section 6 is a consideration of the 
asymptotic nature of the flow over a two-dimensional ridge 
[ 16], a computation with the ADV scheme of four representative 
cases whose asymptotic states are qualitatively different, and 
a detailed comparison of the results of the ADV scheme to the 
asymptotically exact values. In Section 7 is a two-dimensional 
example: the interaction of a pair of like-signed vortices in 
the presence of bottom topography. In this context, the results 
are compared to that obtained by an explicit two time level 
semi-Lagrangian scheme. We finally present a few conclu- 
sions. 

2. THE SHALLOW WATER EQUATIONS 

The classical shallow water equations are, in the presence 
of bottom topography, 

Or/ t- V. r/u = 0, 
Ot 
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FIG.  I .  The allowed velocities in the nine-velocity model are shown on the left side. The four types of mass, momentum, and energy conserving collisions 

are shown on the right. Collision type four involves particles whose precollision and postcollision speeds are different. 

0 u  
- -  + u - V u  = - g V ( r / +  b), (1) 
Ot 

where ~7 is the thickness of  the fluid layer, b is the elevation 
of the bottom topography, u is the two-dimensional horizontal 
velocity, V is the horizontal gradient operator (0 ,  0y), and g is 
the acceleration due to gravity acting in the negative y-direction. 
b + r /g ives  the elevation of the free surface. Assuming that 
the viscous force exerted by the bottom is negligible, the above 
equations are derived from the Euler equations [9] under the 
hydrostatic approximation and describe the depth-independent 
fast dynamics of  an incompressible layer of  fluid. (Also called 
the barotropic mode in ocean dynamics.) 

3. THE DISCRETE-VELOCITY MODEL 

The discrete-velocity model we consider is the nine-velocity 
gas [I 1-13]. Figure 1 shows the allowed velocities (q~, a = 
0 . . . . .  8 ) - - fou r  velocities each of speed q directed along the 
horizontal and vertical, speed X/'2q along the diagonals, and a 
zero speed. Also shown are the four types of  mass, momentum, 
and energy conserving collisions which serve to thermalise 
the distribution. The equilibrium relations representing detailed 
balancing of the collisions in the model, are 

non 2 -~ ndz3, non4 = n3ns,  non6 = / / 5 n 7 ,  
(2) 

non 8 : r t7nl ,  nit /5 = n3nT, 

where na is the probability of  a particle having an allowable 
discrete-velocity qa. The mass, momentum, and total energy in 
terms of the population densities are 

1l = N o + 111 + n 2 + I13 + n4 + tz5 + tl6 + rt7 + 118, 

nux  = q ( n l  + n2 - n4 - ns  - n6 + n8), 

nUy = q(n, .  + n3 + r/4 - -  n6 - n7 - n8), 

ne ,  = q " ( n l  + n3 + ns + n7 + 2(n., + no + n6 + n8)), 

(3) 

where e, = ~u~ + Uy) + e. The equilibrium velocity distribution 
n = (n,, ,  a = 0 . . . . .  8) is obtained by the solution of above 
nine equations, Eq. (2) and Eq. (3). The stationary equilibrium 
distribution (u~ = 0, uy = 0), is simply 

e 2 n e e 

n o = n  1 -  , n l = ~  1 -  --q2, n 2 = ~  , (4) 

with n3 = ns = n7 = n~ and n4 = n6 = n8 = n2. 

4. THE EQUIVALENCE OF THE TWO SYSTEMS 

To represent the shallow water equations as a discrete-veloc- 
ity gas, we consider the nine-velocity gas discussed above under 
two simple transformations (see Fig. 2): 

• The origin of  the discrete-velocity space is translated to 
u(x, t), where u(x, t) is the temporally and spatially varying 
shallow water velocity field. 

• The unit of  discrete velocity, q is scaled so that the particle 
populations are all positive and ]u I < q. 

For convenience, the shallow water equations, Eq. (1), are 
rewritten as 

~ "  + 7 .  ~ u  = O, 
Ot 
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FIG. 2. The adaptive nine-velocity model. The origin of the discrete- 
velocity space and the unit of discrete-velocity q is determined by the local 
velocity u = (u, v) of the shallow water system. 

0r/---~u + V" ( r /u  (~)u + 2 ) O t  =-~TVb" (5) 

where (~) represents the binary outer product operator. The 
above equations have also been nondimensionalized using the 
undisturbed upstream depth r/,, for the reference length and the 
undisturbed upstream long wavelength gravity wave speed 

for the reference velocity. 
The two primary quantities in Eq. (5), the depth 77 and the 

horizontal velocity u, are related to the local state of  the discrete- 
velocity gas as follows: 

a. As mentioned previously, the velocity u is used to translate 
the origin of  the local discrete-velocity space (see Fig. 2), so 
that the allowed discrete-velocities now are c, = u + q,, a = 
0 . . . . .  8, and to scale the unit of  velocity in that space so that 
the resulting particle populations are all positive and lu] < q 
(along x-axis, and Iol < q along y-axis): q = max(~lul, 
~,/r//2) or q = max(alvl, N/-~/2), ot is 1.3 for flows with hy- 
draulic jumps and 1.1 otherwise. 

b. The density of the discrete-velocity gas n is set equal to 
the depth of the shallow layer of  fluid r/. 

c. The discrete-velocity gas is assumed stationary with re- 
spect to the local origin, i.e., ux = u~ = 0 in Eq. (3). 

d. The internal energy ne of the discrete-velocity gas is set 
to the gravitational potential rlz/2. 

Now considering the evolution of the discrete-velocity gas, 
the (model) Boltzmann equations [12 ] - - a  statement of  the 
conservation of the number of  particles with a particular dis- 
cre te-veloci ty--are  

On a 
- - + c ~ . V n o = Q . ( n , n ) ,  a = O  . . . . .  8, (6)  
Ot 

where Q,, is the nonlinear collision operator and the left-hand 
side represents streaming of particles with velocity c,,. The 
zeroth and first-order velocity moments of Eq. (6) give, respec- 
tively, noting that the moments of the collision terms on the 
right-hand side vanish owing to the mass and momentum con- 
serving nature of each collision, 

- - + V . ~ = O ,  
ot 

a ~  
- -  + V . n , , c .  @ e .  = 0.  

at 

(7) 

where the overbar denotes averaging with respect to the dis- 
crete-velocities. From a, b, c. d above and symmetry of the 
discrete-velocities, 

n,,c,, = n,(u + q,) = ~u, since n,,q, = 0. 

n,,c. (~) e,, = n,,(u + q,,) (~) (u + q.) 

= n u Q u  + n,,q,, @ q, 

= neI + "qu (~) u = ~_.q2 + "Ou (~) u. 

Finally, if the bottom forcing in Eq. (5) is introduced as external 
forcing for the discrete-velocity gas, the equivalence is com- 
plete. 

For convenience, the equations may be rewritten as 

af  
- -  + ( V -  G )  T = b 
0t 

with 

(o) 
f =  , b =  , 

r/u - "qVb 

G = [ rlu, rlu (~ u + ~-~21= [~Tc%, n,,c. @ c~]. 

(8) 

5. THE NUMERICAL TECHNIQUE 

The standard discrete velocity models have served as useful 
models for computational fluid dynamics only in the incom- 
pressible or slightly compressible regimes, where the variations 
in the internal energy is small. It is for this reason-- tha t  only 
a very small range of internal energies have to be represented--  
that the standard discrete-velocity models use just one single 
speed. (In a recent work McNamara,  Garcia, and Alder [19] 
use a 3D 21-velocity lattice-Boltzmann model to study the 
Rayleigh-Benard convection and they find that the maximum 
to minimum specific internal energy ratio that they can satisfac- 
torily represent with the model is just 1.5.) If, however, a 
large range of internal energies have to be represented, a larger 
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number of  speeds would have to be used and the propagation 
of population densities is no more computationally cheap: the 
larger the number of  speeds and the more disparate the speeds, 
the more difficult it gets to propagate the densities. It is for 
this reason, that the flux-based evolution scheme for discrete- 
velocity gases was established in [1 ]. An additional advantage 
of this methodology is that while the number of fluxes to 
be calculated remains a constant with increasing number of  
velocities in a model, the number of  densities to propagate 
increases as the number of  velocities in the model. Also note 
that in [19], for reasons of stability, the full propagation of 
population densities had to be abandoned in favor of  a more 
conventional Lax-Wendrof f  time-stepping procedure. In the 
present case, where the speed of the particles change continu- 
ously from point to point, full propagation of the densities is 
ruled out and the evolution is based on the flux calculating 
scheme of [1]. 

For simplicity, consider an uniform square tiling of the two- 
dimensional domain of interest, with each unit square represent- 
ing a slab of the discrete-velocity gas. The values of the slab- 
averaged 77 and u are represented at the slab centroids. The 
evolution at each centroid proceeds as in the following steps: 

Step 1. Use Eq. (4) to convert f = (7/, r/u) to no, n~, and n3: 
q = max(alu[, ~/r//2), 

_ r / ,  
2 

H 2 =  4 . 

(9) 

Step 2. Calculate the split fluxes G + and G -  using the defini- 
tions 

G _ = ( ( u - q ) Q  ( u - q ) 2 Q  ( u - q ) ~ Q ~  

(v q)Q (v - q)uQ (v - q)-Q / "  

where P = (no + 2,10 and Q = (n, + 2n2). 

Step 3. Assuming a linear distribution of the fluxes within 
the slabs, interpolate G~~, Gh, and Gj% to (i + ~ j ) ,  G,~, G;2, 
and G~ to (i, j - ~, etc. and apply the minmod limiter to the 
interpolated fluxes: 

G~(l( i + 1 • ~ J ) = G~(t( i, j ) + ~ninmod( A~kG~( i, j ), Af,,.~G~(i,j )), 

G;.~( i , j  - ~) = G~.~( i , j  ) - ~minmod( A~kGf~( i , j  ), (11) 

AfwdG;.l(i,j )), etc., 

where 

A + . . 
fwdG,,(t,J) = G~,(i + l , j )  - G~,(i,j), 

A~kG~.~(i,j) = Gz~(i,j) - G;_~(i,j - 1), etc. 

Minmod is the one-dimensional total-variation-diminishing op- 
erator as discussed in [14, 15], 

0 if sgn(p) # sgn(q) 
minmod(p,  q) = sgn(p) min{[p[, ]q[} i f sgn(p)  = sgn(q), 

with sgn(p) being the sign o f p  and IP] being the absolute value 
o f p .  

Step 4. Calculate G(i + ~ = G+(i + ~ + G-( i  + ~,  where 
(i + ~) = (i + ~ , j )  and ( i , j  + ~) in turn. 

Step 5. 

n , ~ > 0 G t  ~ n a  ~ ' c  >O~2cax rl~?'>Oca~,Ca~ 
G + = , \n~y>OCay --c ,.>0~ - . . c ,  0 2 ! rid. cax%y rtd. Ca), / 

( - -  / c <0_2 t l ,~ -<Oc~ rtd-, t.ar rt~'<°CayCax 

G- \n~<°G,, n~,<°c,~,Cay n~' c~,, / . .c  <0--'''"T" / '  

( I0) 

where n~>°G~ is the average n,c~ taken only over the discrete 
velocities ea which have a positive x-component c~, etc. For 
example, when u > 0 and v > 0, 

G + 

uP + (u + q)Q 

vP + (v + q)Q 

u2p + (u + q)2 \ 

) uvP + (u + q)vQ 

uuP + (v + q)uQ 

v2P + (v + q)2Q ] 

where, e.g., 

At 
f,0+a,n = f'o + -~- (V" G'0 - r/'0Vb), 

Gll I G i t ( i  + 1 • ~ J )  - G . ( i  - r,,J~ ") ~ .  
\G21/ AX 

+ G2,(i,j + ~) - G2,(i,j - 

Ay 

(12) 

f,, = f'0 + At(V.  G'0 +a'n - g0+a'nVb). (13) 

In the above procedure the fluxes were interpolated and 
limited, instead, the primary quantities f could be interpolated 

Step 6. Repeat steps 1-4,  using f'0 +a'/'- to obtain G'o +a'n, and 
take the full time step to obtain f',: 
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and limited. We have done both and the behavior of the two 
are essentially identical. Finally, we add that although the proce- 
dure to arrive at the final computational form may seem a bit 
complicated, the resulting code is extremely simple. (The code 
in CMFortran may be obtained from the author.) 

6. F L O W  O V E R  A 2D RIDGE 

We consider the flow over a two-dimensional ridge as a test 
problem since (i) the exact asympotic solutions are known 
over a wide range of  Froude numbers, (ii) they include both 
stationary and moving hydraulic jumps,  and (iii) there are fea- 
tures of  the flow which are extremely sensitive to artifacts of 
artificial and/or  numerical viscosities. The two non-dimensional 
numbers, the upstream undisturbed Froude number F.  = 
u/~g~ ,  and the nondimensional height of  the mountain b, = 
bMJrl,,, where r/,, is the depth of  the undisturbed upstream 
fluid layer, are enough to prescribe a flow. The analytically 
determined flow characteristics as a function of these two pa- 
rameters is shown in Fig. 3 (see Houghton and Kasahara [16]). 
In region I, the flow is everywhere subcritical and the free 
surface rises symmetrical ly about the crest of  the ridge. In 
region III, the flow is everywhere supercritical and the free 
surface rises symmetrical ly about the obstacle. In region II, a 
hydraulic jump propagates upstream and a rarefaction down- 
stream. While in region IIa. the hydraulic jump on the lee- 
side is stationary; it propagates downstream in region lib.  We 
consider the same four test cases as in [16] to sample the 
different regimes. The computational domain consists of 40.96 

2.5 • ' i , , , i . , , i , , . i . , , i , . , 

No Jumps 2.(] 

Downstream Propagating Lee-Jump 
(lib) 

0.5 I ~ ~ n a r y "  " " " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (l~la{ urrp -~ 

0 . 0  0.2 0.4 0.6 0.8 1.0 1.2 
Dimensionless Ridge Height 

d Z 
,a 1.5 

E 
~ 1.0 

FIG. 3. The phase portrait lbr the shallow fluid flow over a two-dimensional 
ridge. The parameters b, (dimensionless ridge height) and F, (upstream Froude 
number) fully describe the flow, Associated with the lee-jumps are upstream 
propagating jumps and other downstream propagating rarefactions. 

units of length [ -20 .48 ,  20.48] in the horizontal, 1 unit being 
the undisturbed upstream depth of the fluid. Each unit is spanned 
by 100 points (so that Ax = 0.01) and the boundary condition 
is periodic. The central 20.48 units of the horizontal domain 
are shown. The time step is such that (c,,)m,~At/Ax is between 
0.8 and 1.0. The form of  the mountain is 0.5b,(1 + cos(,+l/ 
L), where L = 1.25 is the half width of  the ridge, and 0 -< 
Ixl - L The initial condition is a flat free surface at 1 and 

T A B L E  I 

Comparison of the ADV Scheme to Exact Asymptotic Values 

Case 
item 

A B C D 

Exact ADV Exact ADV Exact ADV Exact ADV 

~A 
Fa 
Ci 

7,- 0.3852 0.3855 
~ 0.5192 0.5187 

Cr 
rib 
FB 

T/+ 
F+ 

1.0672 1.0672 1.3677 1.3677 
0.2338 0.2338 0.3579 0.3579 

-0.7503 -0.75 -0.5724 -0.5703 

0.3964 0.3963 0.6211 0.6209 1.4722 1.4723 
0.6296 0.6296 0.7881 0.7888 1.2905 1.2905 

0.2339 0.2367 
1.0669 1.0543 

0.6221 0.6220 
0.4012 0.4053 

0.1541 0.1543 
0.3298 0.3298 
1.4846 1.4845 

~x 0.9603 0.9603 0.9281 0.9281 
Fy 0.2599 0.2599 0.6268 0.6271 
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FIG.  4. Case A. Subcritical flow over a 2D ridge: F. = 0.2; bc = 0.2; 
bc = 0.5; t ime = 20.48. The free surface dips symmetr ical ly  about the ridge. 

solution, with the degradation being confined to the vicinity of 
the hydraulic jump. 

6.3. Case C (F,, = 0.7, bc = 0.5) 

The lee-side hydraulic jump in the present case propagates 
downstream. The overshoot of the free surface on the down- 
stream side of the upstream-propagating hydraulic jump is sus- 
pected to be physical. (See Fig. 7.) 

6.4. Case D (F,, = 1.9, b,. = 0.5) 

The flow is everywhere supercritical and in the asymptotic 
state, the free surface rises symmetrically about the ridge. To 
eliminate the transients, the horizontal domain was extended 
by a factor of two, but the resolution was cut down by a factor 
of two (Ax = 0.02). The wave in the right half of the domain 
(downstream of the obstacle) is the transient. (See Fig. 8.) 

The exact asymptotic behavior in all the cases above can be 
obtained as a solution of nonlinear algebraic equations resulting 
from the conservations and shock jump conditions [16]. The 
detailed comparisons of all the features of the flow to the exact 
asymptotic quantities are presented in Table I. The agreement 
is excellent. The errors are confined to the regions of the flow 
most sensitive to artifacts of the implicit artificial viscosity and 
even there they are about 1%. 

uniform velocity F,. The comparison of the numerical results 
to the exact asymptotic values is shown in Table I. 

6.1. Case A (F,, = 0.2, bc = 0.5) 

This case corresponds to a fully subcritical flow with the 
free surface dipping symmetrically about the ridge. Figure 4 
shows the numerical solution (u in the figure corresponds to 
an upstream location and c to the crest. These are the points 
at which comparisons are made to the exact values; see Table I). 

6.2. Case B (F, = 0.3, b~ = 0.5) 

The main features of this case are an upstream propagating 
hydraulic jump, a stationary lee-side hydraulic jump, and a 
downstream propagating rarefaction. Figure 5 shows the numer- 
ical solution. (The upstream hydraulic jump has propagated 
outside the presentation window.) It is our experience with other 
numerical schemes that the region immediately downstream of 
the crest for this combination of parameters is the most difficult 
to handle numerically and is the most sensitive to numerical 
and/or artificial viscosity. Therefore, Fig. 6 magnifies this re- 
gion. (The solid line is the same run as in Fig. 5.) The hydraulic 
jump is two cells wide, there are no oscillations, and the rising 
free surface downstream of the jump is clean. 

In Fig. 6, we also compare the solution in Fig. 5 with the 
case where the resolution is cut down fourfold (and the time 
step is four times as large) but otherwise exactly the same 
setup. The degradation of the solution is faithful to the exact 

7. AN EXAMPLE TWO-DIMENSIONAL CALCULATION 

In this section, we consider the interaction between a pair 
of like-signed vortices in the presence of bottom topography. 
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FIG.  5. Case B. Flow with stationary lee-side hydraulic jump:  F. = 0.3; 
bc = 0.5; t ime = 20.48. 
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FIG.  6. Case B. Flow in the vicinity of the ridge: F, = 0.7; b, = 0.5; 

time = 20.48. The dot-dashed line is the result for the same case but with a 

fourfold reduced resolution and a consequent four times larger timestep. 

The results of  the ADV schemes are compared to that obtained 
by an explicit semi-Lagrangian solver. 

7.1. Restoring Boundaries 

In order to simulate this problem, periodic boundaries are 
unacceptable (for they would simulate an infinite train of vortex 
pairs). Further, there may be gravity waves generated by the 
vortex-vortex interaction, and so that these gravity waves do 
not in turn act on the vortices, we simulate absorbing bound- 
aries. It consists of  introducing a linearly varying restoring 
force which is nonzero outside the domain of physical interest 
in both the height and the momentum equations [18]: 

f ( x )  - -  f b n d ( X )  

r - -  
r(x) 

where 

[ r_--_rbnd /3At, if r >  rbna 
"r = Jrm~x -- rbnd (14) 

L0, otherwise. 

In the above formula, fb,d(X) is the desired value to which fix) 
is to be restored and flAt is the restoration time scale. With a 
computational domain of  1024 × 1024 slabs, we used the 
region r > 480 as the absorbing region with a restoration time 
of  10At. The free surface elevation was restored to 1.0, the 

undisturbed height and the velocity was restored to (0, 0), the 
velocity at infinity. 

7.2. Interaction of  a Pail" of  Vortices 

~(-to(y-y~),to(x-~r,.)), ifr>a, 

u = ] (-to ~ (y - y,.), to ~ (x - x,)), ifr--< a, 

f l  

f -  (-02 
--  to2a2 ~ - r - ,  

77= 
¢o2a 4 

2 r  2 

if r > a,  

ifr_<a 
(15) 

is an exact vortex patch solution of  Eq. (1). ¢o is the constant 
vorticity within the patch of radius a centered at (xc, y,), and 
r is the distance of  a point (x, y) from (x,., y,.). 

The initial condition (in both the methods) consists of two 
vortex patches of  the above form, with (-0 = 3.0 and a = 0.32 
(see Fig. 9). The center of the first patch is at (1.28, 1.28) and 
the center of  the other patch is at ( -  1.28, - 1.28). Centered at 
(0, 0) is an isolated right circular hill whose elevation is of  the 
form 0.5b,(1 + cos(rrr/L), 0 <- r <-- L, where L = 1.92 is the 
half width of the hill and bc = 0.5 is the height of the crest. 
The simulation domain is a square form ( - 1 0 . 2 4 ,  - 1 0 . 2 4 )  to 
(10.24, 10.24), tiled by 1024 × 1024 slabs. The absorbing 
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time = 10.24. 

boundaries are in the region r > 9.60. The restoring time scale 
is 10At. 

The semi-Lagrangian scheme is an explicit two time level 
scheme and is second-order accurate in space and time [17]. 
It uses a flux-corrected monotone advection (interpolation) op- 
erator based on the second-order Trembeck scheme. It has to 
be noted that the monotonicity of  the advection operator does 
not in any way ensure monotonicity of the free surface elevation 
and the velocities. The departure point calculations consist of  
a predictor and a corrector step, the height equation is solved 
using the flow Jacobian [17] and the absorber forces are treated 
implicitly in both the height and velocity equations. 

At was 0.006 for the ADV scheme and 0.008 for the semi- 
Lagrangian scheme. The Eulerian CFL number defined as At 
(lul/Ax + Ivl/ay + X/-nnX/1/Ax + 1/Ay 2) i s  r e s p e c t i v e l y  0 . 8 6  

and 1.14. It is not our intent to make detailed comparisons of 
the relative efficiencies of  the two schemes, but we report 
the relative computational costs of  the two schemes for this 
particular problem: with a time step of 0.006 for the ADV 
scheme and 0.008 for the semi-Lagrangian scheme, the semi- 
Lagrangian scheme took about 60% longer than the ADV 
scheme on a 512 node CM5 partition, but it took only about 
35% longer on a 128-node partition. This is explained by the 
more communication-intensive nature of the semi-Lagrangian 
scheme, even when there is no indirect addressing involved. 
So when the subgrid s ize- - the  number of grid points assigned 
to each processing unitI increases,  as when a small number 
of processing units are used, the communication overhead de- 

creases. In addition, the intricacies of  programming the CM5 (in 
the data parallel mode) restrict the utility of these comparisons. 

One of the attractive features of  semi-Lagrangian schemes, 
however, is that the time step is not limited by the CFL criterion 
as with Eulerian schemes (already evident with the timestep of 
0.008). Thus with the shallow water equations, the only restric- 
tion on the timestep in explicit semi-Lagrangian schemes is the 
resolution of the gravity waves. So, the semi-Lagrangian 
scheme was also run with a timestep of 0.012, which corre- 
sponded to a gravity wave based Courant number of 0.86 (an 
Eulerian CFL number of 1.73). With this timestep, however, 
(a) there is a communication overhead associated with indirect 
addressing resulting in an overall speedup of only about 9% 
over a timestep of 0.008 (at which no indirect addressing was 
necessitated) and (b) there is a reduction in accuracy. We there- 
fore only present the semi-Lagrangian results for the timestep 
of 0.008. 

Figure 10 shows a snapshot at time 32.76 using the ADV 
scheme, and Fig. 11 at the same time uses the semi-Lagrangian 
scheme. The overall evolution of the two vortices in the two 
schemes is almost identical. Plotted in Fig. 12 is the azimuthal 
velocity and free surface elevation profiles through a vertical 
cross section (x = 0.48), passing approximately through the 
center of the lower vortex in Fig. 10 and Fig. 1 I. While the 
correspondence outside of the core of the vortex is remarkably 
good; the core of the vortex is clearly smaller in the ADV 
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FIG. 10. The contour plot of  the free surface elevation and the velocity 
field at time = 32.76. using the ADV scheme. The format of  the plot is the 
same as in Fig. 9. 

FIG. 12. A comparison of  the free surface elevation and the azimuthal 
velocity profiles at time = 32.76. as obtained by the semi-Lagrangian scheme 
and the ADV scheme. The cross section approximately passes vertically through 
the center of  the lower vortex patch. The solid line is the semi-Lagrangian 
result and the dot-dashed line the result from the ADV scheme. 
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FIG. 11. The contour plot of  the free surface elevation and the velocity 
field at time = 32.76, using the semi-Lagrangian scheme. The format of  the 
plot is the same as in Fig. 9. 

scheme as compared to the semi-Lagrangian scheme. This 
needs to be investigated further. It has also to be kept in mind 
that the semi-Lagrangian scheme, as it is used, cannot handle 
hydraulic jumps; an artificial viscosity (which has to be tuned 
appropriately for each particular case to avoid spurious oscilla- 
tions) has to be added. Finally, the preservation of  the physical 
symmetries of  the problem verify the isotropy of  the scheme 
despite the one-dimensional nature of  the limiting procedure 
(Eq. ( 11 )). 

8. C O N C L U S I O N  

We have presented a new approach to solving the shallow- 
water equations based on discrete velocities. The resulting sec- 
ond-order (in space and time) scheme for the shallow water 
equations is very simple and yet robust; it can handle flows 
over a wide range of  Froude numbers accurately and capture 
hydraulic jumps over 2 - 3  slab widths with no oscillations. 
The adaptive nature of  the discrete-velocities (i.e., the floating 
reference and variable scaling of  the discrete velocities) is a 
new paradigm of  using these models in other numerical tech- 
niques and is expected to be of  wider applicability than just 
the shallow water equations which were studied in this article. 
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